Molecular mechanisms of viral and host cell substrate recognition by hepatitis C virus NS3/4A protease.

نویسندگان

  • Keith P Romano
  • Jennifer M Laine
  • Laura M Deveau
  • Hong Cao
  • Francesca Massi
  • Celia A Schiffer
چکیده

Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF and 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-cell selectivity profiling of membrane-anchored and replicase-associated hepatitis C virus NS3-4A protease reveals a common, stringent substrate recognition profile.

The need to identify anti-Flaviviridae agents has resulted in intensive biochemical study of recombinant nonstructural (NS) viral proteases; however, experimentation on viral protease-associated replication complexes in host cells is extremely challenging and therefore limited. It remains to be determined if membrane anchoring and/or association to replicase-membrane complexes of proteases, suc...

متن کامل

Enzymatic characterization of membrane-associated hepatitis C virus NS3-4A heterocomplex serine protease activity expressed in human cells.

The hepatitis C virus (HCV) nonstructural (NS)3-NS4A serine protease heterocomplex is a prime target for development of novel HCV therapies, due to its essential role in maturation of the viral polyprotein. While the mode of substrate/inhibitor recognition of the HCV NS3/NS4A serine protease has been extensively studied in vitro, important molecular aspects of the mechanism of action for this m...

متن کامل

Hepatitis C Virus NS3/4A Protease Inhibits Complement Activation by Cleaving Complement Component 4

BACKGROUND It has been hypothesized that persistent hepatitis C virus (HCV) infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4), composed of subunits C4α, C4β, and C4γ, and t...

متن کامل

DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication.

Hepatitis C virus (HCV) infection often causes long-term persistent hepatitis, which eventually leads to liver cirrhosis and hepatocellular carcinoma. HCV-encoded NS3/4A protease plays an important role in HCV immune evasion by cleaving key adapter proteins VISA and TRIF of the RIG-I-like receptors and Toll-like receptors mediated interferon (IFN) induction pathways. To further understand the r...

متن کامل

Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding.

Hepatitis C virus infects an estimated 180 million people worldwide, prompting enormous efforts to develop inhibitors targeting the essential NS3/4A protease. Resistance against the most promising protease inhibitors, telaprevir, boceprevir, and ITMN-191, has emerged in clinical trials. In this study, crystal structures of the NS3/4A protease domain reveal that viral substrates bind to the prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 85 13  شماره 

صفحات  -

تاریخ انتشار 2011